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ABSTRACT

In the past, the extended corresponding states approach to fluid property prediction

has been restricted to non-polar fluids (e.g., hydrocarbons and some common non-polar

inorganics) due to the lack of an accurate way to predict the required shape factors.  In this

work, a new predictive method to obtain shape factors for the extended corresponding states

theory has been developed which is applicable to both polar and non-polar fluids.  The

details of this revised extended corresponding states model are presented. The resulting

model has been applied with success to a wide variety of pure fluids including alcohols,

amines, ethers and substituted aromatics.  Detailed extended corresponding states shape

factor results are presented here for hydrocarbons, alkenes, non-polar inorganics, polar

inorganics and refrigerants

KEY WORDS: extended corresponding states theory, phase equilibria, polar fluids,

pVT, shape factors



1. INTRODUCTION

Polarity and association profoundly affect the phase behavior and the single phase

properties of fluids. Most approaches used to represent the thermodynamic properties of

polar fluids have been based upon empirical modifications of engineering equations of state.

Usually these modifications involve the addition of one or more parameters which account

for the polar effects. More sophisticated models are based on perturbation theory and

include the perturbed-hard-chain theory family (PCT), with different modifications according

to the properties of interest, the chain of rotators (COR), the Boublick-Alder-Chen-

Kreglewski (BACK) equation of state and the statistical association fluid theory (SAFT).  A

detailed review of these models as well as others is given in reference [1].

One of more accurate approaches to predicting properties of non polar fluids, the

extended corresponding states theory (ECST), has not found much success for polar fluids.

This has been due to the inaccurate prediction of the shape factors required in the ECST

model and the simple mixing rules typically used with this approach.  The potential

advantages of this model are the incorporation of high accuracy reference fluid equations of

state and the well-defined theoretical approximations which underlay its application. The

revised ECST model reported here presents a new way of predicting and/or correlating

component shape factors.  It has been applied with success to a wide variety of pure fluids

including alcohols, amines, ethers and substituted aromatics, both for single phase and

equilibrium properties.



2. REVISED ECST SHAPE FACTORS FOR PURE FLUIDS

In the late 70s early 80s, high accuracy equations of state based on wide-range

experimental data for homologous series became available, which made possible the exact

(although numerical) calculation of shape factors.  Given these high accuracy equations of

state, shape factors can be found from the simultaneous solution of the equations
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where the scaling factors fj and hj are defined below and a notation has been introduced in

which a dimensionless residual property is denoted  by a lower case letter with a superscript

‘r’. For example, in equation (1) above a A V T A V T RTr
0 0 0 0 0 0 0≡ −[ ( , ) ( , )] /*  where ‘*’ denotes

an ideal gas value.  The mathematical details of the implementation of the ECST are given in

the literature�2�.

For the great majority of fluids, the high accuracy equations of state required to

solve equations (1) and (2) are not available.  Thus, the application the ECST for those

fluids requires the prediction of the shape factors.  So far, the exact shape factors have been

found to be temperature and density dependent. However, it is possible to calculate shape

factors which are density independent and are a good representation of the exact ones in

certain parts of the phase diagram..

2.1   Subcritical Shape Factors

A good example of density independent shape factors are those obtained from the

mapping of the saturation boundaries of the reference fluid ‘0’ and the target fluid  ‘j’  by

simultaneous solution of the following equations�3�:
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where psat and ρsat represent the saturated pressure and density, T denotes the temperature

and  fj and hj are the equivalent substance reducing ratios, which are defined as functions of

the shape factors, θ( , )V T and φ( , )V T ,
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The exponent “c”  denotes the a critical property.  Analysis of the exact shape factors in the

subcritical region shows weak density dependence, thus allowing, to a very good approxi-

mation, the use of the saturated shape factors in this region.  As summarized in reference [4]

shape factors determined from equations (1)-(5) have been fitted to simple functions of

reduced temperature such as
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and then used to make ECST predictions over the entire thermodynamic surface.  In this

work we have developed improved functional forms to represent the shape factors and

better methods to predict the parameters used in those functional forms.

In order to calculate the shape factors along the saturation boundary, analytical

expressions for the saturated pressure and liquid density must be known.  The simplest



equation for correlation of the vapor pressure with a sound physical basis is the Frost-

Kalkwarf equation �5�, which in its reduced form can be written as
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where the superscript “*” denotes a reduced value of the related quantities.  D*  is a

universal constant 27/64 and B* and C* depend upon the material under consideration.  For

the liquid density, the Rackett equation gives a compact yet amazingly accurate means to

estimate saturated liquid volumes.  In its original form it can be expressed as �6�:
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Using equations (3-5) and (8), the θ  shape factor can be written as

θ
θ

=
− + − + + + −

− +
1 1

1
0

0 0

2

C B C T B T D p T

C B T
j j j j

sat
j

j

* * * * * * * ,* *

* * *

ln ln ( ) /Φ ∆ ∆ Φ
. (10)

In deriving (10) we have assumed that θ is close to one and therefore lnθ θ≅ −1 and have

defined Φ = φ Z Zj
c c

0� �, ∆B B Bj
* * *= − 0  and ∆C C Cj

* * *= − 0.  Analysis of exact shape factor

data along the saturation boundary shows that the term that multiplies D*  is very small,

contributing at most 0.005 to the shape factor in a small region near the critical point.  Away

from the critical point it typically contributes less than 0.00001.  Thus, the term was

neglected.  Since there are two unknowns remaining, θ and Φ, another equation is needed.

At saturation hj is given by
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If the Rackett equation [9] is used to calculate the saturated liquid volumes, the expression

for φ becomes
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As a first order approximation for φ that is independent of θ, we assume that θ ≅ 1 and that,

Φ ≈φ2 .  The exponent of two is based on empirical observation and we note that more

complicated approximations are possible.  The net result of these manipulations is our final

expression for the θ  shape factor
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Note that as a consequence of our approximation concerning Φ, θ approaches unity at the

critical point.  It is also important to note a very important feature of the shape factor

formulas given in equations (12) and (13).  In particular, this formulation is easily

transferable between reference fluids since the reference fluid parameters appear explicitly in

the shape factors.  This should be compared to the formulation given in equations (6) and

(7) which is reference fluid specific and can only be used with other reference fluids through

cumbersome transformation formulas [4].

Given this new formulation, it is possible to correlate the θ and φ shape factors by

fitting B* and C*  in equation (13) and Zj
c  and the exponent ε (=2/7 in the original equation

(12)) in the Rackett equation to saturation data.  Fig. 1 illustrates the results that can be

obtained from these equations for n-pentane as compared to the exact values for the shape



factors obtained from equations (1) and (2).  The agreement, even in the vicinity of the

critical point, is excellent.

Since the goal of corresponding states theory is to predict fluid properties given a

minimum of information, typically the critical point parameters and acentric factor, a

relationships between the B* and C* and the parameters available in a corresponding states

calculation is required.  By plotting experimental data for non-polar and non-hydrogen

bonding polar substances, Reynes and Thodos �7�, found that . C B* */ / ln= +8 3 9 5 10.

Thus, it only remains to determine one parameter, B*, per fluid.  Using the observed

relationship between B* and C* and equation (8) to calculate the acentric factor, it is easy to

show that B*   can be written in terms of ω as

B b b b* = + + −
1 2 310ω ω (14)

where for the relationship between B* and C* given above, b1 = 6.207612, b2 =15.37641

and b3 = 0.574946.  Thus, in the subcritical region, the relationships developed here can be

used in either a correlative or predictive mode, given the information available.

2.2   Supercritical Shape Factors

At supercritical conditions there is no accepted, accurate way to estimate the shape

factors.  Several unique lines in this region have been analyzed in this study, including, the

critical isochore and the zeno (unit compressibility factor) line�8�. Fig. 2. illustrates the

exact shape factors found along these lines and the saturation boundary for methane.  In

examining Fig. 2, we conclude that in the single-phase region where the lines don’t coincide,

it is not possible to characterize the behavior of a fluid without the introduction of density

dependence in the shape factors.  The observed density dependence in the shape factors in



this region can in part be due to uncertainties in the equations of state (according to the

techniques used in their construction) and in the experimental data upon which they depend.

We contend, however, that this apparent density dependence is primarily due to the fact that

the two-parameter corresponding states principle requires that the critical compressibility

factors of the target and reference fluids be identical at the critical point—something that is

not generally observed in nature.  Thus, we see a strong “hook” in the subcritical shape

factors at the critical point and a near-critical region where two, temperature only dependent

paths give different values for θ and Φ.

From the two-parameter corresponding states relation for the pressure at the critical

point of the target fluid we find that
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Our construction of θ  as given in equation (13) requires that θ c be unity which places the

reference fluid on its critical isotherm, where for a fairly large region around the critical

point p0 1* ≅ .  Thus, the limiting subcritical value of φ is Z Zc c
0 /  and we have chosen to set φ

equal to this constant value in the supercritical region.  Note that there is large precedent for

this approximation, since this is the result obtained from simple (two parameter) engineering

EOS where the volume parameter is temperature independent�9� and all fluids have the

same critical compressibility factor.  As for θ, we assume that the critical isochore of the

target fluid is linear and map that isochore onto a nearby (assumed linear) isochore of the

reference fluid via the following relationship
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where the superscript ‘σ’ indicates the isochore which intersects the reference fluid

saturation boundary at ρ ρσ
0 0= h , h Z Zc c

j
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 .  γc for the target fluid

may be obtained from the Frost-Kalkwarf equation where (α=1) as

 γ αj
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Our studies have shown that with α=1, equation (16) tends to underestimate the slope of the

critical isochore by about 2%.  Thus we have empirically set α =1.02.

2.1 RESULTS

In the previous section a new technique for correlating and predicting shape factors,

which allows the a more accurate description of the phase diagram, especially in the

subcritical region, was developed.  This new method has been applied to 325 pure fluids

from several families already mentioned.  In order to compare with previous

implementations of ECST, we are only reporting results for 31 fluids for which we have high

accuracy, wide range equations of state. Table I compares the results obtained by correlating

the subcritical shape factors with the new and old functional forms for typical fluids

investigated in this study.  Table II presents comparable results obtained by using the two

models in a predictive mode where only the critical point and acentric factor are given as

input.  Table III presents the results of predicting the supercritical shape factors along the

critical isochore using the new and old procedures.  The superiority of the new predictive

methods, especially in the subcritical region, is obvious. Also, this new method allows a

more accurate correlation and prediction of the shape factors in the near critical region than



what was previously possible.  Since the accuracy of the calculated thermodynamic

properties is a reflection of the accuracy of the shape factors themselves, the description of

the fluids through this new formulation will be superior to the previous ECST formulation.

3. SUMMARY AND CONCLUSIONS

In this work we have developed new methods for correlating and predicting the

component shape factors for the extended corresponding states approach to fluid properties.

Unlike previous methods, these methods are transferable from one reference fluid to

another, are not limited to non-polar substances and, therefore, offer a means of making

more accurate predictions for polar fluids.  Future work will include the incorporation of

more sophisticated mixing rules in the revised extended corresponding states model so that

more accurate predictions may be made for polar-polar and polar-non-polar mixtures.
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Table I  Comparison of Exact and Correlated Subcritical Shape Factors
θ  Shape Factor φ  Shape Factor

Equation (13) Equation (6) Equation (12) Equation (7)

Fluid Type Np
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
Hydrocarbons1 1258 0.08 0.09 -0.05 0.08 0.10 0.00 0.16 0.19  -0.04 0.15 0.21 0.00

Alkenes2 258 0.09 0.11 -0.06 0.07 0.08 0.00 0.58 0.66 0.22 0.11 0.16 0.00

Non-polar Inorganics3 442 0.07 0.11 -0.04 0.12 0.16 0.00 0.36 0.48 0.08 0.41 0.52 0.00

Polar Inorganics4 398 0.09 0.12 -0.05 0.21 0.26 0.00 1.09 1.33 -0.20 0.94 1.16 0.02

Refrigerants5 1135 0.06 0.07 -0.03 0.09 0.12 0.00 0.15 0.18 0.00 0.43 0.55 0.01

Overall 3491 0.07 0.09 -0.05 0.10 0.13 0.00 0.32 0.39 -0.01 0.36 0.46 0.00
1Hydcrocarbons:  methane, ethane, n-butane, i-butane, n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, cyclohexane
2Alkenes:  ethylene, propylene;
3Non-polar Inorganics:  oxygen, nitrogen, carbon dioxide, argon, neon;
4Polar Inorganics:  ammonia, water , hydrogen sulfide, carbon monoxide;
5Refrigerants:  R11, R12, R22, R32, R123, R124, R125, R134a, R143a, R152a



Table II.  Comparison of Exact and Predicted Subcritical Shape Factors
θ  Shape Factor φ  Shape Factor

Equation (13) Equation (6) Equation (12) Equation (7)

Fluid Type1 Np
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
Hydrocarbons 1258 0.17 0.15 0.05 0.22 0.25 0.02 0.25 0.21 0.04 0.53 0.40  -0.11

Alkenes 258 0.34 0.09  -0.31 0.21 0.25 -0.01 0.57 0.72 -0.06 0.70 0.34  -0.51

Non-polar Inorganics 442 0.16 0.14  -0.10 0.43 0.23 0.36 0.43 0.54 0.07 1.77 0.70  -1.73

Polar Inorganics 398 0.54 0.46 0.02 1.23 0.74  -0.80 1.14 1.38  -0.14 9.15 1.70 7.77

Refrigerants 1135 0.20 0.19 0.11 0.49 0.34  -0.36 0.19 0.17 0.10 3.61 0.90 2.93

Overall 3491 0.23 0.19 0.02 0.45 0.33  -0.16 0.38 0.41 0.04 2.69 0.75 1.54
1 Fluid type groupings are defined in Table I.



Table III.  Comparison of Exact and Predicted Supercritical Shape Factors

θ  Shape Factor φ  Shape Factor

Equation (15) Equation (6) φ = Z Zo
c c/ Equation (7)

Np
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
AAD

%
RMS

%
BIAS

%
Hydrocarbons 510 0.96 0.77 0.59 0.72 0.62 0.32 3.06 1.85 -2.69 3.61 1.94 -2.95

Alkenes 102 0.39 0.38 0.17 0.55 0.59 -0.20 1.65 1.82 -0.30 2.26 2.41 1.13

Non-polar Inorganics 255 0.69 0.49 -0.41 1.91 1.24 -1.69 7.27 5.25 6.72 7.13 5.49 6.36

Polar Inorganics 204 0.56 0.40 0.40 1.12 0.75 -0.79 3.37 2.79 2.75 3.10 3.06 2.01

Refrigerants 255 0.28 0.30 0.11 1.16 0.87 -0.42 3.73 3.28 0.29 4.07 3.50 -0.84

Overall 1326 0.67 0.54 0.24 1.08 0.81 -0.42 3.94 2.92 0.71 4.19 3.13 0.32
1 Fluid type groupings are defined in Table I.



FIGURE CAPTIONS

Fig. 1 Comparison of correlated subcritical n-pentane shape factors obtained with equations

(12) and (13) to exact values calculated with equations (1) and (2).

Fig. 2 Illustration of the lack of correspondence along the critical isochore and zeno line for

methane.  The dashed curves are the shape factors on the zeno line while the solid lines

show values along the critical isochore.
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